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Abstract. We have created a large diverse set of cars from overhead
images (Data sets, annotations, networks and scripts are available from
http://gdo-datasci.ucllnl.org/cowc/), which are useful for training a deep
learner to binary classify, detect and count them. The dataset and all
related material will be made publically available. The set contains con-
textual matter to aid in identification of difficult targets. We demonstrate
classification and detection on this dataset using a neural network we call
ResCeption. This network combines residual learning with Inception-
style layers and is used to count cars in one look. This is a new way
to count objects rather than by localization or density estimation. It is
fairly accurate, fast and easy to implement. Additionally, the counting
method is not car or scene specific. It would be easy to train this method
to count other kinds of objects and counting over new scenes requires no
extra set up or assumptions about object locations.
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1 Introduction

Automated analytics involving detection, tracking and counting of automobiles
from satellite or aerial platform are useful for both commercial and government
purposes. For instance, [1] have developed a product to count cars in parking lots
for investment customers who wish to monitor the business volume of retailers.
Governments can also use tracking and counting data to monitor volume and pat-
tern of traffic as well as volume of parking. If satellite data is cheap and plentiful
enough, then it can be more cost effective than embedding sensors in the road.

A problem encountered when trying to create automated systems for these
purposes is a lack of large standardized public datasets. For instance OIRDS [2]
has only 180 unique cars. A newer set VEDAI [3] has 2950 cars. However, both
of these datasets are limited by not only the number of unique objects, but they
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also tend to cover the same region or use the same sensors. For instance, all
images in the VEDAI set come from the AGRC Utah image collection [4].

We have created a new large dataset of Cars Overhead with Context (COWC).
Our set contains a large number of unique cars (32,716) from six different image
sets each covering a different geographical location and produced by different
imagers. The images cover regions from Toronto Canada [5], Selwyn New Zealand
[6], Potsdam [7] and Vaihingen Germany [8], Columbus [9] and Utah [4] United
States. The set is also designed to be difficult. It contains 58,247 usable negative
targets. Many of these have been hand picked from items easy to mistake for
cars. Examples of these are boats, trailers, bushes and A/C units. To compensate
for the added difficulty, context is included around targets. Context can help tell
us something may not be a car (is sitting in a pond?) or confirm it is a car
(between other cars, on a road). In general, the idea is to allow a deep learner
to determine the weight between context and appearance such that something
that looks very much like a car is detected even if it’s in an unusual place.

2 Related Work

We will focus on three tasks with our data set. The first task is a two-class
classifier. To some extent, this is becoming trivial. For instance, [10] reports near
100 % classification on their set. This is part of the reason for trying to increase
the difficulty of targets. Our contribution in this task is to demonstrate good
classification on an intentionally difficult dataset. Also, we show that context
does help with this task, but probably mostly on special difficult cases.

A more difficult problem is detection and localization. A very large number of
detectors start with a trained classifier and some method for testing spatial loca-
tions to determine if a target is present. Many approaches use less contemporary
SVM and Boosting based methods, but apply contextual assistance such as road
patch detection or motion to reduce false positives [3,11–13]. Some methods use
a deep learning network with strided locations [1,10] that generate a heat map.
Our method for detection is similar to these, but we include context by expand-
ing the region to be inspected in each stride. We also use a more recent neural
network which can in theory handle said context better.

By far our most interesting contribution that uses our new data set is vehicle
counting. Most contemporary counting methods can be broadly categorized as
a density estimator [14–16] or, detection instance counter [11,13,17]. Density
estimators try to create an estimation of the density of a countable object and
then integrate over that density. They tend not to require many training samples,
but are usually constrained to the same scene on which it was trained. Detection
counters work in the more intuitive fashion of localizing each car uniquely and
then counting the localizations. This can have the downside that the entire image
needs to be inspected pixel by pixel to create the localizations. Also, occlusions
and overlapping objects can create a special challenge since a detector may merge
overlapping objects. Another approach tries to count large crowds of people by
taking a fusion over many kinds of feature counts using a Markov random field
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constraint [18] and seems like a synthesis of the density and detection approaches.
However, it uses object-specific localizers such as a head detector so it is unclear
how well it would generalize to other objects.

Our method uses another approach. We teach a deep learning neural network
to recognize the number of cars in an extended patch. It is trained only to count
the number of objects as a class and is not given information about location
or expected features. Then we count all the cars in a scene using a very large
stride by counting them in groups at each stride location. This allows us to
take one look at a large location and count by appearance. It has recently been
demonstrated that one-look methods can excel at both speed and accuracy [19]
for recognition and localization. The idea of using a one-look network counter to
learn to count has recently been demonstrated on synthetic data patches [20] and
by regression on subsampled crowd patches [21]. Here we utilize a more robust
network, and demonstrate that a large strided scan can be used to quickly count
a very large scene with reasonable accuracy. Additionally, we are not constrained
by scene or location. Cars can be automatically counted anywhere in the world,
even if they are not on roads or moving.

3 Data Set Details

Overhead imagery from the six sources is standardized to 15 cm per pixel at
ground level from their original resolutions. This makes cars range in size from
24 to 48 pixels. Two of the sets (Vaihingen, Columbus) are grayscale. The other
four are in RGB color. Typically, we can determine the approximate scale at
ground level from imagery in the field (given metadata from camera and GPS,
IMU calibrated SFM [22] or a priori known position for satellites). So we do
not need to deal with scale invariance. However, we cannot assume as much in
terms of quality, appearance or rotation. Many sets can still be in grayscale or
have a variety of artifacts. Most of our data have some sort of orthorectification
artifacts in places. These are common enough in most overhead data sets that
they should be addressed here.

The image set is annotated by single pixel points. All cars in the annotated
images have a dot placed on their center. Cars that have occlusions are included
so long as the annotator is reasonably sure the item is a car. Large trucks are
completely omitted since it can be unclear when something stops being a light
vehicle and starts to become a truck. Vans and pickups are included as cars even
if they are large. All boats, trailers and construction vehicles are always added
as negatives. Each annotated image is methodically searched for any item that
might at least slightly look like a car. These are then added. It is critical to try
and include as many possible confounders as we can. If we do not, a trained
system will underperform when introduced to new data.

Occasionally, some cars are highly ambiguous or may be distorted in the
original image. Whether to include these in the patch sets depends on the task.
For the classification task, if it was unclear if an item was or was not a car, it was
left out. Distorted cars were included so long as the distortion was not too grave.
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In both cases, this is a judgment call. For the counting task, one is forced to deal
with these items since they appear incidentally in many training patches. For
that, a best guess is made. If a car was highly distorted, it was counted as a car
so long as it appeared to be a car.

To extract training and testing patches from large overhead images, they
were subdivided into grids of size 1024 × 1024 (see Fig. 1). These grid regions
were automatically assigned as training or testing regions. This keeps training
and testing patches separate. The two types of patches cannot overlap. How-
ever, testing image patches may overlap other testing image patches and train-
ing patches overlap other training patches. In places like crowded parking lots,
patches necessarily overlap. Every fourth grid location was used for testing. This
creates an approximate ratio of more than three training patches for each testing
patch. The patches are extracted in slightly different ways for different tasks. We
do not include a validation set because we use a held out set of 2048×2048 scene
images for final testing in the wild for each given task.

Fig. 1. The locations from which testing and training patches were extracted from an
overhead image of Toronto. Blue areas are training patch areas while red areas are
testing patch areas. (Color figure online)

Each held out scene is 2048×2048 (see Fig. 2). This is approximately 307×307
meters in size at ground level. Held out scenes are designed to be varied and
non-trivial. For instance, one contains an auto reclamation junkyard filled with
banged up cars. We have 10 labeled held out scene images, and 10 more where
cars have been counted but not labeled. An additional 2048 × 2048 validation
scene was used to adjust parameters before running on the held out scene data.
The held out data is taken from the Utah set since there is an abundance of
free data. They are also taken from locations far from where the patch data was
taken. Essentially, all patch data was taken from Salt Lake City and all held out
data was taken from outside of that metropolitan area. The held out data also
contains mountainous wooded areas and a water park not found anywhere in the
patch data. Other unique areas such as the aforementioned auto junkyard and
a utility plant are included, but there are analogs to these in the patch data.
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Fig. 2. Three examples of 2048× 2048 held out scenes we used. These include a mixed
commercial industrial area, a water park and a mountain forest area.

4 Classification and Detection

We created a contextual set of patches for classification training. These are sized
256 × 256. We created rotational variants with 15 degree aligned offsets of each
unique car and each unique negative. This yielded a set of 308,988 training
patches and 79,447 testing patches. A patch was considered to contain a car
if it appeared in a central 48 × 48 region (The largest expected car length).
Any car outside this central region was considered context. So, negative patches
frequently had cars in them, so long as the car did not fall inside the 48 × 48
pixel region. An edge margin of 32 pixels was grayed out in each patch. This was
determined to provide the optimal context (see Sect. 4.1 “Does Context Help?”).

Fig. 3. left A standard Inception layer. right A ResCeption layer. The primary differ-
ence between it and Inception is that the 1 × 1 convolutions are used as a residual
shortcut with projection.

We trained a few different networks for comparison. Since we want to include
contextual information, larger more state-of-the-art networks are used. We
used AlexNet [23] as our smaller baseline and GoogLeNet/Inception with batch
normalization [24,25]. We created a third network to synthesize Residual Learn-
ing [26] with Inception. We called this one ResCeption (Fig. 3). The ResCeption
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network is created by removing the 1×1 convolutions in each Inception layer and
replacing them with a residual “projection shortcut”. In section five, the advan-
tage of doing this will become more apparent. [27] published to arXiv at the time
of this writing, is similar, but keeps the 1 × 1 convolution layers. These seem
redundant with the residual shortcut which is why we removed them. The Res-
Ception version of GoogLeNet has about 5 % more operations than the Inception
version, but interestingly runs about 5 % faster on our benchmark machine. All
three networks were trained using Caffe [28] and stochastic gradient descent for
240 k iterations with a mini batch size of 64. A polynomial rate decay policy was
used with initial learning rate of 0.01 and power of 0.5. Momentum was 0.9 and
weight decay 0.0002. The network input size was 224 × 224, so training images
were randomly cropped to move the target a little around inside the 48 × 48
central region. Testing images were center-cropped.

Table 1. The percentage of test patches correctly classified for each deep model. The
Non-Utah model was trained with non-Utah data (the other five sets) and then tested
with Utah data to observe generalization to new datasets.

Model Correct

AlexNet 97.62 %

Inception 99.12 %

ResCeption 99.14 %

ResCeption non-utah 98.89 %

Table 1 shows that Inception and ResCeption work noticeably better than
AlexNet. However, all three seem to do pretty well. Figure 4 shows examples of
patches the ResCeption network got correct.

4.1 Does Context Help?

We were interested to determining if context really helps classification results.
To do this, we created sets where we masked out margins of the patches. By
adjusting the size of the margin, we can determine performance changes as more
or less of each patch is visible. We did this in increments of 32 pixels starting
from the smallest possible region with only 32× 32 pixels visible. Each training
was done on GoogLeNet by fine-tuning the default version from Caffe. Figure 5
shows the results. Even the version with a small amount of context does well,
but performance does increase monotonically until 192 × 192 pixels are visible.
This suggests that most of the time, context is not all that important. Cars seem
easy to classify. Context might only help in the 1 % or 2 % of difficult cases where
strong occlusions and poor visibility make a determination difficult. That we can
have too much context might be a result of too much irrelevant information or
bad hints from objects that are too far from a car.
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Fig. 4. (top row) Test patches which the ResCeption network correctly classified as
containing a car in the central region. Occlusions and visibility issues are commonly
handled, but we note that they still appear to account for much of the error. (bottom
row) Patches that were correctly classified as not containing a car in the central region.
The leftmost image is not a mistake. It has a tree in the center while the shifted version
above it has a car concealed slightly underneath the tree.

4.2 Detection

Next we wanted to ascertain how well our trained network might perform on
a real world task. One task of interest, is target verification. In this, another
item such an object tracker [29] would have been assigned to track a target car.
Our network would then be used to verify each frame to tell if the tracker was
still tracking a car or if it had drifted to another target. A second more difficult
task would involve localization and detection. This is the ability to find cars and
determine where they are in a natural scene. The two tasks are almost equivalent
in how we will test them. The biggest difference is how we score the results.

For this task we used the trained ResCeption network since it had a slightly
better result than Inception. Each of the 10 labeled 2048 × 2048 scene image
were scanned with a stride of eight. At each stride location, 192 × 192 pixels
were extracted and a 32 pixel margin was added to create a 224 × 224 patch.

Fig. 5. The percentage of correct patches versus the amount of context present. As
more context is included, accuracy improves. It appears optimal to cut out a small
amount of context.
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The softmax output was computed and taken to the power of 16 to create a
wider gradient for the output around the extremes:

p = (o1 − o2 + 1)16 /216 (1)

Fig. 6. (left) A held out scene super imposed with the derived heat map colored in
red. (right) A close up of one of the sections (highlighted in yellow on left) showing
examples of detections and misses. The lower left car is considered detected since it is
mostly inside the box. The false positive appears to be a shed. (Color figure online)

This yielded a heat map with pixels p created from softmax outputs car o1 and
not car o2. The value ranged from 0 to 1 with a strong upper skew. Location was
determined using basic non-maximal suppression on the heat map (keeping it
simple to establish a baseline). Bounding boxes were fixed at size 48 pixels which
is the maximum length of a car. Boxes could overlap by as much as 20 pixels.
Maximal locations were thresholded at 0.75 to avoid weak detections. These
values were established on a special validation scene, not the hold out scenes.
A car was labeled as a detection if at least half of its area was inside a bounding
box. A car was a false negative if it was not at least half inside a box. A false
positive occurred when a bounding box did not have at least half a car inside it.
For the verification condition, splits (two or more detections on the same car)
and mergers (two or more cars only covered by one box) did not count since
these are not an effect that should impact its performance. For detection, a split
yielded an extra false positive per extraneous detection. A merger was counted
as a false negative for each extra undetected car. Figure 6 shows examples of
detections from our method.

In Table 2, we can see the results for both conditions. Typically for car detec-
tions without explicit location constraints, precision/recall statistics range from
75 % to 85 % [3,10] but may reach 91 % if the problem is explicitly constrained to
cars on pavement only [11–13]. This is not an exact comparison, but an F-score
of 94.37 % over an unconstrained area of approximately 1 km2 suggests we are
doing relatively well.
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Table 2. Verification and detection performance is shown for the ResCeption model.
Count is the number of cars in the whole set. TP, FP and FN are true positive, false
positive and false negative counts. F is the precision/recall related F-Score. Ideally the
verification score should be similar to the patch correctness which was 99.14 %. So, we
do incur some extra error. Detection error is higher since it includes splits and mergers.

Condition Count TP FP FN Precision Recall F

Verification 260 253 9 7 96.56 % 97.31 % 96.93 %

Detection 260 250 20 10 92.59 % 96.15 % 94.34 %

5 Counting

The goal here was to create a one-look [19] counting network that would learn the
combinatorial properties of cars in a scene. This is an idea that was previously
described in [20] who counted objects in synthetic MNIST [30] scenes using a
smaller five-layer network. The overhead scenes we wish to count from are too
large for a single look since they can potentially span trillions of pixels. However,
we may be able to use a very large stride and count large patches at a time. Thus,
the counting task is broken into two parts. The first part is learning to count
by one-look over a large patch. The second part is creating a stride that counts
objects in a scene one patch at a time.

Training patches are sampled the same as for the classification task. However,
the class for each patch is the number of cars in that patch. Very frequently, cars
are split in half at the border of the patch. These cars are counted if the point
annotation is at least 8 pixels into the visible region of the image. Thus, a car
must be mostly in the patch in order to be counted. If a highly ambiguous object
was in a patch, we did our best to determine whether it was or was not a car.
This is different from the classification task were ambiguous objects could be
left out. Here, they were too common as member objects that would incidentally
appear in a patch even if not labeled.

We trained AlexNet [23], Inception [24,25] and ResCeption networks which
only differed from the classification problem in the number of outputs. Here, we
used a softmax with 64 outputs. A regression output may also be reasonable,
but the maximum number of cars in a scene is sufficiently small that a softmax
is feasible. Also, we cover the entire countable interval. So there are no gaps that
would necessitate using regression. In all the training patches, we never observed
more than 61 cars. We rounded up to 64 in case we ever came upon a set that
large and wanted to fine tune over it.

We also trained a few new networks. The main idea for creating the Res-
Ception network was to allow us to stack Inception like layers much higher.
This could give us the lightweight properties of GoogLeNet, but the ability to
go big like with ResNet [26]. Here we have created a double tall GoogLeNet like
network. This is done by repeating each ResCeption layer twice giving us 22 Res-
Ception layers rather than 11. It was unclear if we needed three error outputs
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like GoogLeNet, so we created two versions of our taller network. One double
tall network has only one error output (o1) while another has three in the same
fashion as GoogLeNet (o3).

Fig. 7. Examples of patches which were correctly counted by the ResCeption Taller
o3 network. From left to right the correct number is 9, 3, 6, 13 and 47. Note that cars
which are not mostly inside a patch are not counted. The center of the car must be at
least 8 pixels inside the visible region.

For the non-tall networks, training parameters were the same as with clas-
sification. For the double tall networks, the mini batch size was reduced to 43
to fit in memory and the training was extended to 360 k iterations so that the
same number of training exposures are used for both tall and non-tall networks.
Table 3 shows the results of error in counting on patch data. Examples of correct
patch counts can be seen in Fig. 7. It’s interesting to note that we can train a
very tall GoogLeNet like network with only one error output. This suggests that
the residual component is doing its job.

Table 3. The patch based counting error statistics. The first data column is the per-
centage of test patches the network gets exactly correct. The next two columns show
the percentage counted within 1 or 2 cars. MAE is the mean absolute error of count.
RMSE is the root mean square error. The last column is the accuracy if we used the
counting network as a proposal method. Thus, if we count zero cars, the region would
be proposed to contain no cars. If the region contains at least one car, we propose
that region has at least one car. The Taller ResCeption network with just one error
output has the best metrics in three of the six columns. However, the improvement is
somewhat modest.

Model Correct is +/− 1 is +/− 2 MAE RMSE Proposal Acc

AlexNet 67.97 % 95.69 % 98.82 % 0.527 1.192 95.32 %

Inception 80.35 % 95.89 % 98.87 % 0.257 0.665 97.79 %

ResCeption 80.34 % 95.95 % 98.86 % 0.255 0.657 97.69 %

ResCeption taller o1 81.07% 96.11% 98.89 % 0.248 0.676 97.84%

ResCeption taller o3 80.82 % 96.08 % 98.95% 0.250 0.665 97.83 %
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5.1 Counting Scenes

One of the primary difficulties in moving from counting cars in patches to count-
ing cars in a scene using a large stride is that if we do not have overlap between
strides, cars may be cut in half and counted twice or not at all. Since cars have
to be mostly inside a patch, some overlap would be ideal. Thus, by requiring
that cars are mostly inside the patch, we have created a remedy to the splitting
and counting twice problem, but have increased the likelihood of not counting
a split car at all. In this case, since we never mark the location of cars, there
is no perfect solution for this source of error. We cannot eliminate cars as we
count because we do not localize them. However, we can adjust the stride to
minimize the likelihood of this error. We used the special validation scene with
628 cars and adjusted the stride until error was as low as possible. This resulted
in a stride of 167. We would then use this stride in any other counting scene.
An example of a strided count can be seen in Fig. 8. To allow any stride and
make sure each section was counted, we padded the scene with zeros so that the
center of the first patch starts at (0,0) in the image.

Fig. 8. A subsection of one of the held out scenes. It shows the stride used by the
network as well as the number of cars it counted in each stride. Blue and green borders
are used to help differentiate the region for each stride. One can see the overlapping
region where the strides cross. 74 cars are counted among the six strides seen. The
sub-scene contains 77 complete cars. Note that cars on their side are not counted since
we are only concerned with cars that are mobile. (Color figure online)

We tested counting on a held out set of 20 2048×2048 scenes. The number of
cars in each scene varied between 881 and 10 with a mean of 173. Each held out
scene was from the Utah AGRC image set. However, we selected geolocations
which were unique. All Utah patch data came from the Salt Lake City metropol-
itan area. The held out data came from locations outside of that metro. These
included some unusual and difficult locations such as mountain forest, a water
park and an auto junkyard. Many of the scenes have dense parking lots, but
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many do not. We included industrial, commercial and residential zones of differ-
ent densities. The error results can be seen in Table 4. It is interesting to note
that while the double tall ResCeption network with one output dominates the
patch results, the double tall ResCeption network with three outputs dominates
the scene results. This may be related to the lower RMSE and +/− 2 error for
the three-output network. The network may be less prone to outlier errors. The
two extra error inputs may act to regulate it.

Table 4. Error for counting over all 20 held out scenes. Mean absolute error is expressed
as a percentage of cars over or under counted. This is taken as a percentage since the
mean absolute error (MAE) by count highly correlates with the number of cars in a
scene (r > 0.80 for all models). RMSE is the root mean square of the percent errors.
The maximum error shows what the largest error was on any of the 20 scenes. Cars
in ME is how many cars were in the scene with the highest error. Scenes with smaller
numbers of cars can bump error up strongly since missing one or two cars is a larger
proportion of the count. Finally, we count how many cars are in the entire set of 20
scenes. The total error shows us how far off from the total count we are when we sum up
all the results. So for instance, there are a total of 3456 cars in all 20 scenes. The taller
ResCeption network with three outputs counts 3472 cars over all the scenes. Its total
error is 0.46 %. A low total error suggests that error between scenes is more random
and less biased since it centers around zero. This seems to contradict the correlation
between error and size mentioned earlier. This may come about if there is a bias within
scenes, but not between scenes (i.e. some types of scenes tend to be over counted and
others tend to be under counted and this cancels out when we sum the scene counts).

Model MAE RMSE Max error Cars in ME Total error

AlexNet 8.46 % 11.64 % 27.27 % 22 3.30 %

Inception 6.50 % 8.05 % 17.65 % 51 0.84 %

ResCeption 5.78% 8.09 % 18.18 % 22 1.22 %

ResCeption taller o1 6.44 % 8.09 % 18.18 % 22 1.19 %

ResCeption taller o3 6.14 % 7.57% 15.69% 51 0.46%

As a second experiment, we attempted to reduce the error caused by double
counting or splitting by averaging different counts over the same scene. Each
count has a different offset. So we have the original stride which starts at (0,0)
and three new ones which start at (0,4), (4,0) and (4,4). Ideally, these slight
offsets should not split or double count the same cars. The results can be seen
in Table 5. Of the twenty scene error metrics we consider, 19 are reduced by
averaging over several strides.

A comparison with other car counting methods with available data can be
seen in Table 6. Mean accuracy is comparable to interactive density estimation
[15]. However, our method is completely automatic. Scenes do not need any
special interactive configuration. Another item of interest is that we make no
explicit assumption about car location. [13] uses a pavement locator to help
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Table 5. This is similar to Table 4 but here we show the mean result from four different
slightly offset strides. In 19 of the 20 error statistics, this method improves results over
Table 4. With some random error due to double counting removed, the three output
taller ResCeption model is clearly superior.

Model MAE RMSE Max error Cars in ME Total error

AlexNet 8.40 % 10.53 % 21.59 % 22 3.02 %

Inception 6.46 % 7.86 % 15.69 % 51 0.75 %

ResCeption 5.35 % 7.17 % 14.77 % 22 1.12 %

ResCeption taller o1 5.85 % 6.95 % 13.24 % 51 1.22 %

ResCeption taller o3 5.15% 6.70% 12.75% 51 0.20%

reduce false positives. In our case, cars are counted even if they are on someone’s
lawn. The deep learner may potentially ingest and understand context, so it
is conceivable that it may be biased against counting a car in water or on a
building top.

Table 6. Reported errors for two recent car counting methods are shown compared
with the error from our best model’s results. The first column indicates if the method
is completely automatic. The second column tells us if we do not have any location
restrictions such as only counting cars on roads or scenes that have been corrected.
The Images column is how many scene images are in the test set. Total cars over all
scenes is shown after that as well as how many cars were counted in total. The mean
absolute error is given over all the test scenes. For the SIFT/SVM method, one single
scene accounts for much of the error. This is not an apples-to-apples comparison, but
it does give a general idea of performance given the strengths of our approach.

Method Auto. No Loc. Images Tot. cars Counted MAE Tot. error

Density [15] No No 1 230 220 4.35 % 4.35 %

SIFT/SVM [11] Yes No 5 119 132 36.74 % 9.85 %

Deep learn Yes Yes 20 3456 3463 5.15 % 0.19 %

5.2 Counting Efficiency

In addition to accuracy, we wanted to measure the efficiency of our solution. We
are using larger networks, but we are also using a very large stride. The cost
of running GoogLeNet is 30 k ops per pixel at 224 × 224. With a stride of 167
on a scene, the cost increases to 54 k ops per pixel over the scene. By modern
standards, this is not an outrageous cost. By comparison, a very small, single-
pixel strided CNN would require at least a million ops per pixel over a scene.
Table 7 shows the time of running the different counting network over a scene.

The AlexNet version will count cars at a rate of 1 km2 per second. A company
such as Digital Globe which produced satellite data at the rate of 680,000 km2 per
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Table 7. Performance results taken for our models running on Caffe on a single Nvidia
GeForce Titan X based GPU. The number of batches required to run a full scene gives
us an idea of the extra overhead from running larger models. The time is how many
seconds it takes to run a single 2048× 2048 scene. This yields a rate in fps. Finally we
can see how many km2 we can scan per second using the method.

Model Batches Time FPS km2 PS

AlexNet 1 0.087 11.486 1.084

Inception 2 0.366 2.731 0.258

ResCeption 2 0.344 2.906 0.274

ResCeption taller o1 4 0.748 1.337 0.126

ResCeption taller o3 4 0.773 1.294 0.122

day in 2014 would theoretically be able to count the cars in all that data online
with 8 GPUs. Indeed, another comparison would be to [1]. As their solution is
proprietary, comparison data is difficult to come by. They have claimed that
they can count cars in 4 trillion pixels worth of images in 48 h using a cloud-
based solution. Their approach is to label each pixel using a deep network [31]
for the pixel’s “car-ness”. Assuming image data is supplied to the GPU just in
time, our AlexNet based solution would be able to count that many pixels in
23 h using one single GPU. AlexNet has 8.46 % mean absolute error, but if one
is just analyzing trends such as number of customers at a shopping center, this
is probably accurate enough.

6 Conclusion

We have created a large and difficult dataset of cars overhead that we have used
to classify, detect and count cars. Our classification results are quite excellent
and our detection results appear to be better than even those of methods that
constrain the location of cars. Out counting method appears to be very efficient
and yields results similar to methods which are scene constrained or need to be
fine tuned to process scenes other than the ones used in training.
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